Chemoselective Oxidation of Benzyl, Amino, and Propargyl Alcohols to Aldehydes and Ketones under Mild Reaction Conditions
نویسندگان
چکیده
Catalytic oxidation reactions often suffer from drawbacks such as low yields and poor selectivity. Particularly, selective oxidation of alcohols becomes more difficult when a compound contains more than one oxidizable functional group. In order to deliver a methodology that addresses these issues, herein we report an efficient, aerobic, chemoselective and simplified approach to oxidize a broad range of benzyl and propargyl alcohols containing diverse functional groups to their corresponding aldehydes and ketones in excellent yields under mild reaction conditions. Optimal yields were obtained at room temperature using 1 mmol substrate, 10 mol % copper(I) iodide, 10 mol % 4-dimethylaminopyridine (DMAP), and 1 mol % 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) in acetonitrile, under an oxygen balloon. The catalytic system can be applied even when sensitive and oxidizable groups such as alkynes, amines, and phenols are present; starting materials and products containing such groups were found to be stable under the developed conditions.
منابع مشابه
Microwave-Assisted Efficient and Chemoselective Acetalization of Aldehydes with Trimethyl Orthoformate
Efficient and chemoselective protection of aldehydes to the corresponding dimethyl acetals have been carried out by mixture of trimethyl orthoformate and methanol in the presence of a catalytic amount of TMSCl or AlCl3 under microwave irradiation. Under these conditions, acetalization of ketones does not take place and they remain intact under reaction conditions. The results are compared with ...
متن کاملChemoselective Pd-catalyzed oxidation of polyols: synthetic scope and mechanistic studies.
The regio- and chemoselective oxidation of unprotected vicinal polyols with [(neocuproine)Pd(OAc)]2(OTf)2 (1) (neocuproine = 2,9-dimethyl-1,10-phenanthroline) occurs readily under mild reaction conditions to generate α-hydroxy ketones. The oxidation of vicinal diols is both faster and more selective than the oxidation of primary and secondary alcohols; vicinal 1,2-diols are oxidized selectively...
متن کاملInvestigation of Catalytic Activity of Bis[2-(p-tolyliminomethyl)phenolato] Copper(II) Complex in the Selective Oxidation of Alcohols with Hydrogen Peroxide
In this article, the catalytic activity of bis[2-(p-tolyliminomethyl)phenolato] copper(II) complex was studied, for the first time, in the oxidation of various primary and secondary alcohols to the corresponding aldehydes or ketones. The effect of different solvent was studied in the oxidation of benzyl alcohol and methanol was chosen as the reaction medium. Also the effect of different oxidant...
متن کاملMild and Efficient Oxidation of Alcohols with NaIO4 Catalyzed by a Manganese Porphyrin-polyoxometalate Hybrid Material
Efficient and selective oxidation of alcohols with NaIO4 catalyzed by an organic-inorganic hybrid material in which manganese(III)5,10,15,20-tetrakis(4-aminophenyl)porphyrin chloride, MnIII(TAPP)Cl, is covalently linked to a Lindqvist structure of polyoxometalate, Mo6O192-, at room temperature is reported. The effect of various parameters such as catalyst amount, solvent and oxidant were studie...
متن کاملCopper-Catalyzed Oxidation of Alcohols to Aldehydes and Ketones: An Efficient, Aerobic Alternative
An efficient, copper-based catalyst has been discovered that oxidizes a wide range of alcohols into aldehydes and ketones under mild conditions. This catalytic system utilizes oxygen or air as the ultimate, stoichiometric oxidant, producing water as the only by-product.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2015